Demonstration that orf2 encodes the feline immunodeficiency virus transactivating (Tat) protein and characterization of a unique gene product with partial rev activity.
نویسندگان
چکیده
The long PCR technique was used to amplify the three size classes of viral mRNAs produced in cells infected by feline immunodeficiency virus (FIV). We identified in the env region a new splice acceptor site that generated two transcripts, each coding for an 11-kDa protein, p11(rev), whose function is unknown. The small-size class of mRNAs included two bicistronic orf2/rev mRNAs and two rev-like mRNAs, consisting only of the second exon of rev and coding for a 15-kDa protein, p15(rev). p15(rev) contained the minimal effector domain of Rev and was sufficient to mediate partial Rev activity. The bicistronic mRNAs encoded two distinct proteins, one of 23 kDa corresponding to Rev and a 9-kDa protein encoded by the orf2 gene. The orf2 gene product is a protein of 79 amino acids with characteristics similar to those of the Tat (transactivator) proteins of the ungulate lentiviruses. Transient expression assays, using the FIV long terminal repeat (LTR) to drive transcription of the bacterial gene for chloramphenicol acetyltransferase demonstrated that the orf2 gene transactivates gene expression an average of 14- to 20-fold above the basal level. Deletion mutants of the FIV LTR were generated to locate sequences responsive to transactivation mediated by the orf2 gene. A 5' deletion mutant that removed the AP1 site resulted in residual low-level transactivation by orf2. Further experiments using LTR mutants with internal deletions identified three regions located between positions -126 and -47 relative to the cap site that were important for orf2-directed transactivation. These regions include the AP1 site, a C/EBP tandem repeat, and an ATF site.
منابع مشابه
Functional and Physical Consequence of Human Immunodefficiency Virus Transactivator TAT Interaction with Human Cell Cycle Regulator p53
Human immunodeficiency virus (HIV) transactivator Tat is a potent activator of both viral and cellular genes. Tat has also been implicated in the development of AIDS-related malignancy. Here, we show that Tat physically and functionally is able to sequester the cell cycle check point protein p53. This sequestration results in non-functional promoter activity of cyclin-dependent kinase/cyclin i...
متن کاملMolecular detection of proteolytic activity of human parechovirus 2A protein by gene expression
Parechoviruses form one of the nine genera in the picornaviridae family, and include two human pathogens: Human parechovirus type1 and 2 (Hpev1 and Hpev2). The genome of picornaviruses encodes a single polyprotein, which undergoes a cleavage cascade performed by virus encoded proteases to give the final virus proteins. The primary cleavage occurs by 2A protein and this step is critical for vi...
متن کاملDesigning and analyzing the structure of Tat-BoNT/A(1-448) fusion protein: An in silico approach
Clostridium botulinum type A (BoNT/A) produces a neurotoxin recently found to be useful as an injectable drug for the treatment of abnormal muscle contractions. The catalytic domain of this toxin which is responsible for the main toxin activity is a zinc metalloprotease that inhibits the release of neurotransmitter mediators in neuromuscular junctions. A cell penetrating cationic peptide, Tat, ...
متن کاملEquine infectious anemia virus tat: insights into the structure, function, and evolution of lentivirus trans-activator proteins.
Equine infectious anemia virus (EIAV) contains a tat gene which is closely related to the trans-activator genes of the human and simian immunodeficiency viruses. Nucleotide sequence analysis of EIAV cDNA clones revealed that the tat mRNA is composed of three exons; the first two encode Tat and the third may encode a Rev protein. Interestingly, EIAV Tat translation is initiated at a non-AUG codo...
متن کاملFeline immunodeficiency virus OrfA is distinct from other lentivirus transactivators.
The feline immunodeficiency virus (FIV) accessory factor, OrfA, facilitates transactivation of transcription directed by elements of the viral long terminal repeat (LTR). In order to map OrfA domains required for this transactivation, we used N- and C-terminal deletion constructs of the protein, expressed in a Gal4-based transactivation system. The results demonstrated that FIV OrfA, unlike oth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 73 1 شماره
صفحات -
تاریخ انتشار 1999